
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: NP-COMPLETE THEORY –
PART I

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the definitions of NP, polynomial problems,
exponential problems, intractable/undecidable problems

• Explain what yes-no problems are, and convert
optimization problems into yes-no problems

• Develop NP algorithms for NP problems

• Describe in preliminary terms polynomial-time
transforms between yes-no problems

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

2

OUTLINE

• Taxonomy of computational problems

• Yes-no problems

• The NP class/family and its significance

• Definition of NP problems and NP algorithms

• Development of NP algorithms for a number of NP
problems

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

3

INTRODUCTION
-- POLYNOMIAL-TIME PROBLEMS --

• Definition: A problem is said to be polynomial if there is an
algorithm that solves the problem in time 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝑐𝑐), where
𝑐𝑐 is a constant.

• Examples of polynomial problems:

• Sorting: 𝑂𝑂(𝑛𝑛 log𝑛𝑛) = 𝑂𝑂(𝑛𝑛2)

• All-pairs shortest path: 𝑂𝑂(𝑛𝑛3)
• Minimum spanning tree: 𝑂𝑂(𝐸𝐸 log𝐸𝐸) = 𝑂𝑂(𝐸𝐸2)

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

4

INTRODUCTION
-- EXPONENTIAL-TIME PROBLEMS --

• Definition: A problem is exponential if no polynomial-time
algorithm can be developed for it and if we can find an

algorithm that solves it in 𝑂𝑂(𝑛𝑛𝑢𝑢 𝑛𝑛), where 𝑢𝑢 𝑛𝑛 → ∞ as 𝑛𝑛 → ∞.

• Examples of exponential problems:

• Generating combinatorial families of exponential size (like
subsets of a set, binary strings, graphs, permutations, etc.)

• The Tower of Hanoi problem

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

5

https://en.wikipedia.org/wiki/Tower_of_Hanoi

TAXONOMY OF COMPUTATIONAL PROBLEMS
-- FOUR BROAD CLASSES OF PROBLEMS --

• The world of computation can be subdivided into 3 classes:

• Polynomial problems (P)

• Exponential problems (E)

• Intractable/undecidable (non-computable) problems (I)

• There is a very large and important class of problems that

• we know how to solve exponentially,

• we don't know how to solve polynomially, and

• we don't know if they can be solved polynomially at all

• This class is a gray area between the P-class and the E-
class. It will be studied in this and next lecture

CS 6212 Design and Analysis of Algorithms
NP-Complete Theory 6

Intractable

Exponential

Polynomial

?

FOCUS ON YES-NO PROBLEMS

• Definition: A yes-no problem consists of an instance
(or input I) and a yes-no question Q.

• Yes-no problems are also called decision problems

• Much of NP-complete theory focuses on yes-no
problems

• Several examples of yes-no problems follow

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

7

AN EXAMPLE OF YES-NO PROBLEMS
-- THE HAMILTONIAN CYCLE PROBLEM (HAM) --

The Hamiltonian Cycle (HC) problem HAM is:

• Input: A graph G

• Question: Does G have a Hamiltonian Cycle?

This graph does This graph does not

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

8

1

5

4 3

2

4

1

5 3

2

The K-clique problem (CLIQUE):

• Input: A graph G and an integer k

• Question: Does G have a k-clique?

This graph has 4-cliques This graph does not have 4-clqiues

ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE CLIQUE PROBLEM--

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

9

1

5

4 3

2
4

1

5 3

2

ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE SUBSET-SUM PROBLEM --

• The subset-sum problem
Instance: A real array A[1:n]

Question: Can A be partitioned to 2 parts of equal sum?

• Examples:
1. A=[1, 2, 4, 2, 7]. The answer is YES:

Partition A to {1,7} and {2,4,2}, both adding up to 8.

2. A=[2,4,2,7]. The answer to the question is NO. Why?

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

10

ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE SATISFIABILITY PROBLEM (SAT) --

• The satisfiability problem (SAT)
Instance: A Boolean Expression F
Question: Is there an assignment to

the variables in F so that F
evaluates to 1?

• Examples:
1. 𝐹𝐹 = 𝑥𝑥1 + 𝑥𝑥2′ 𝑥𝑥1′ + 𝑥𝑥2 + 𝑥𝑥3 . Answer is YES:

𝑥𝑥1 ← 1, 𝑥𝑥2 ← 1, 𝑥𝑥3 ← 0; 𝐹𝐹 = 1 + 1′ 1′ + 1 + 0 = 1 + 0 0 + 1 + 0 = 1 . 1 = 1
2. 𝐹𝐹 = (𝑥𝑥1 + 𝑥𝑥2)𝑥𝑥1′𝑥𝑥2′ . Answer is NO. (Why?)

Try every possible 0/1 assignment to 𝑥𝑥1 and 𝑥𝑥2, and evaluate 𝐹𝐹. You will find that 𝐹𝐹=0 in
each case

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

11

Boolean algebra:
• A Boolean variable 𝑥𝑥 can be assigned 0 or 1
• There are 3 Boolean operations: + . ′

standing for “or”, “and”, “not”
• 0+0=0, 0+1=1+0=1, 1+1=1
• 0.0=0, 0.1=1.0=0, and 1.1=1
• 0’ = 1, 1’ = 0 (note that 𝑥𝑥.𝑥𝑥′ = 0 ∀ Bool 𝑥𝑥)
• A Boolean expression is an expression involving

Boolean variables and the three operations

𝑥𝑥𝑥𝑥 = 𝑥𝑥. 𝑥𝑥

ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE TRAVELING SALESMAN PROBLEM (TSP) --

• The original formulation of the Traveling Salesman Problem

Instance: A weighted graph G

Question: Find a minimum-weight Hamiltonian cycle in G.

• The yes-no formulation of TSP:

Instance: A weighted graph G and a real number d

Question: Does G have a Hamiltonian cycle of weight ≤ d?

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

12

In the context of TSP, a HC is called a
traveling salesman tour

DEFINITION OF NP
-- USING TURING MACHINES --

• Definition 1 of NP: A yes-no problem is said to be
Non-deterministically Polynomial (NP) if we can find a
non-deterministic Turing machine that can solve the
problem in a polynomial number of nondeterministic
moves.

• For those who are not familiar with Turing machines,
two alternative definitions of NP will be developed.

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

13

DEFINITION OF NP
-- ALTERNATIVE DEFINITION: THE GRADING ANALOGY --

• Definition 2 of NP: A yes-no problem is said to be NP if
• its solution comes from a finite set of possibilities, and
• it takes polynomial time to verify the correctness of a candidate solution

• Remarks
• It is much easier and faster to "grade" (i.e., verify) a solution than to find

a solution from scratch.
• We use NP to designate the class of all non-deterministically

polynomial problems.
• Clearly, P is a subset of NP (Why?)

• A very famous open question in Computer Science:

𝑃𝑃 =
?
𝑁𝑁𝑃𝑃

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

14

NP

P

DEFINITION OF NP ALGORITHM
-- THE IMAGINARY “CHOOSE” -

• To give the 3rd alternative definition of NP, we introduce an imaginary, non-
implementable instruction, which we call "choose()".

• Behavior of "choose()":
• if a problem has a solution of N components, choose(i) magically returns the i-th

component of the CORRECT solution in constant time

• if a problem has no solution, choose(i) returns mere "garbage", that is, it
returns an uncertain value (instead of knowing and saying “there is no
solution”)

• Definition of NP algorithm: An NP algorithm is an algorithm that has 2 stages:
1. A guessing stage that uses choose() to find a solution to the problem

2. A verification stage that checks in polynomial time the correctness of the
solution produced by the first stage, withoutusing choose()

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

15

genius-crazy

TEMPLATE OF NP ALGORITHMS

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

16

begin
// the guessing stage: guesses solution X[1:N] in O(N) time
for i=1 to N do

X[i] := choose(i);
endfor

// the verification stage
Write code that does not use "choose" and that verifies in
polynomial time if X[1:N] is a correct solution to the
problem. If correct, return (yes); else, return no.

end

The guessing stage (uses “choose”)

The verification stage (NO “choose”)

DEFINITION OF NP
-- ALTERNATIVE DEFINITION: THE IMAGINARY “CHOOSE” --

• Definition 3 of NP: A yes-no problem is said to be NP
if there exists an NP algorithm for it (i.e., a polynomial
guess-verify algorithm).

• Remark: For the NP algorithm template to be
polynomial, the solution size N must be polynomial in
the input size n, and the verification stage must be
polynomial in n.

• Note: We will use the third definition of NP

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

17

AN NP ALGORITHM FOR HAM

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

18

Function HC(input: G)
begin

// the guessing stage: guesses solution X[1:n] in O(n) time
for i=1 to n do

X[i] := choose(i);
endfor

// the verification stage. Time: 𝑂𝑂 𝑛𝑛2 , which is polynomial
for i=1 to n do

for j=i+1 to n do
if (X[i] == X[j]) then return(no); endif

endfor
endfor
for i=1 to n-1 do

if ((X[i],X[i+1]) is not an edge) then return(no); endif
endfor
if ((X[n],X[1]) is not an edge) then return(no); endif
return(yes);

end

• The HC algorithm is 𝑂𝑂 𝑛𝑛2 , which is polynomial
• Therefore, the HC problem is NP

AN NP ALGORITHM FOR THE CLIQUE PROBLEM

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

19

Function kclique(input: G, k)
begin

// the guessing stage: guesses solution
X[1:k] in O(n) time
for i=1 to k do

X[i] := choose(i);
endfor

// the verification stage.
for i=1 to k do

for j=i+1 to k do
if (X[i] == X[j] || (X[i],X[j]) is not
an edge) then

return(no);
endif

endfor
endfor
return(yes);

end

• The HC algorithm is
𝑂𝑂 𝑘𝑘2 = 𝑂𝑂(𝑛𝑛2), which is
polynomial

• Therefore, the HC
problem is NP

This graph has 4-cliques:

This graph does not have 4-clqiues:

1

5

4 3

2

4

1

5 3

2

The K-clique problem

• Input: A graph G and an integer k

• Question: Does G have a k-clique?

CONNECTION B/W THE VERIFY STAGE AND
THE BOUND FUNCTION IN BACKTRACKING

• Recall that in Backtracking, the Bound function checked for
validity of a (partial) solution.

• It did the checking incrementally, i.e., on a new component X[r]

• Assuming X[1:r-1] is all valid

• The verification stage in NP algorithms is like the Bound
function, except that the former checks the validity of whole
solution all at once

• Despite the difference, the underlying logic is the same

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

20

LESSONS LEARNED SO FAR

• There are some problems, called NP problems, that can be
solved in exponential time, but we don’t know if they are
inherently exponential or can one day be solved in
polynomial time

• Proving a yes-no problem to be NP is easy: design a guess-
verify algorithm (where the guess stage uses “choose” but the
verify stage does not), such that the verify stage takes
polynomial time

• The verify-stage is similar to the Bound function in
Backtracking

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

21

EXERCISES
• Exercise 1: Give an NP algorithm for the SUBSET-SUM problem

• Exercise 2: Give an NP algorithm for the TSP

• Exercise 3: Give an NP algorithm for the SAT problem

• Exercise 4: An independent set of k nodes in a graph G is any subset of k nodes in G
such that no two nodes are adjacent. Express as a yes-no problem the problem of
whether G has a k-node independent set, and prove it to be NP by giving an NP
algorithm for it.

• Exercise 5: A vertex cover C of k nodes in a graph G is any subset of k nodes in G
such that every edge in G has at least one end node in C. Express as a yes-no
problem the problem of whether G has a k-node vertex cover, and prove it to be NP.

• Exercise 6: Express the k-colorability of a graph G as a yes-no problem, and prove it
to be NP.

CS 6212 Design and Analysis of Algorithms
NP-Complete Theory 22

NEXT LECTURE

• Transforms for yes-no problems

• Generalizations of transforms and some applications

• Reductions (using transforms)

• Definition of NP-completeness, conceptually first, and using
reductions second

• Practical strategy for proving new problems to be NP-complete

• Proving CLIQUE to be NP-complete, using a transform/reduction

• Closing thoughts

CS 6212 Design and Analysis of Algorithms NP-Complete Theory

23

	CS 6212 Design and Analysis of Algorithms��Lecture: Np-complete theory – part I
	Objectives of this Lecture
	outline
	Introduction �-- Polynomial-time problems --
	Introduction �-- exponential-time problems --
	Taxonomy of computational problems�-- four broad classes of problems --
	Focus on Yes-No Problems
	An Example of yes-no problems�-- The Hamiltonian Cycle problem (HAM) --
	Another Example of yes-no problems�-- The clique problem--
	Another example of yes-no problems�-- the subset-sum problem --
	Another example of yes-no problems�-- The satisfiability problem (SAT) --
	Another example of yes-no problems�-- The traveling salesman problem (TSP) --
	Definition of np�-- using turing machines --
	Definition of np�-- alternative definition: the grading analogy --
	Definition of np algorithm�-- the imaginary “choose” -
	Template of np algorithms
	Definition of np�-- alternative definition: the imaginary “choose” --
	an NP algorithm for HAM
	an NP algorithm for the clique problem
	Connection b/w the verify stage and the bound function in Backtracking
	Lessons learned so far
	Exercises
	Next lecture

