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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the definitions of NP, polynomial problems, 
exponential problems, intractable/undecidable problems

• Explain what yes-no problems are, and convert 
optimization problems into yes-no problems

• Develop NP algorithms for NP problems

• Describe in preliminary terms polynomial-time 
transforms between yes-no problems
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OUTLINE

• Taxonomy of computational problems

• Yes-no problems

• The NP class/family and its significance

• Definition of NP problems and NP algorithms

• Development of NP algorithms for a number of NP 
problems
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INTRODUCTION 
-- POLYNOMIAL-TIME PROBLEMS --

• Definition: A problem is said to be polynomial if there is an 
algorithm that solves the problem in time 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝑐𝑐), where 
𝑐𝑐 is a constant.

• Examples of polynomial problems:

• Sorting: 𝑂𝑂(𝑛𝑛 log𝑛𝑛) = 𝑂𝑂(𝑛𝑛2)

• All-pairs shortest path: 𝑂𝑂(𝑛𝑛3)
• Minimum spanning tree: 𝑂𝑂(𝐸𝐸 log𝐸𝐸) = 𝑂𝑂(𝐸𝐸2)
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INTRODUCTION 
-- EXPONENTIAL-TIME PROBLEMS --

• Definition: A problem is exponential if no polynomial-time 
algorithm can be developed for it and if we can find an 

algorithm that solves it in 𝑂𝑂(𝑛𝑛𝑢𝑢 𝑛𝑛 ), where 𝑢𝑢 𝑛𝑛 → ∞ as 𝑛𝑛 → ∞.

• Examples of exponential problems:

• Generating combinatorial families of exponential size (like 
subsets of a set, binary strings, graphs, permutations, etc.)

• The Tower of Hanoi problem
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TAXONOMY OF COMPUTATIONAL PROBLEMS
-- FOUR BROAD CLASSES OF PROBLEMS --

• The world of computation can be subdivided into 3 classes:

• Polynomial problems (P)

• Exponential problems (E)

• Intractable/undecidable (non-computable) problems (I) 

• There is a very large and important class of problems that

• we know how to solve exponentially,

• we don't know how to solve polynomially, and

• we don't know if they can be solved polynomially at all 

• This class is a gray area between the P-class and the E-
class. It will be studied in this and next lecture
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FOCUS ON YES-NO PROBLEMS

• Definition: A yes-no problem consists of an instance 
(or input I) and a yes-no question Q.

• Yes-no problems are also called decision problems

• Much of NP-complete theory focuses on yes-no 
problems

• Several examples of yes-no problems follow
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AN EXAMPLE OF YES-NO PROBLEMS
-- THE HAMILTONIAN CYCLE PROBLEM (HAM) --

The Hamiltonian Cycle (HC) problem HAM is:

• Input: A graph G

• Question: Does G have a Hamiltonian Cycle?

This graph does This graph does not 
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The K-clique problem (CLIQUE):

• Input: A graph G and an integer k

• Question: Does G have a k-clique?

This graph has 4-cliques This graph does not have 4-clqiues

ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE CLIQUE PROBLEM--
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ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE SUBSET-SUM PROBLEM --

• The subset-sum problem
Instance: A real array A[1:n]

Question: Can A be partitioned to 2 parts of equal sum? 

• Examples:
1. A=[1, 2, 4, 2, 7]. The answer is YES: 

Partition A to {1,7} and {2,4,2}, both adding up to 8. 

2. A=[2,4,2,7]. The answer to the question is NO. Why?
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ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE SATISFIABILITY PROBLEM (SAT) --

• The satisfiability problem (SAT)
Instance: A Boolean Expression F
Question: Is there an assignment to 

the variables in F so that F 
evaluates to 1? 

• Examples:
1. 𝐹𝐹 = 𝑥𝑥1 + 𝑥𝑥2′ 𝑥𝑥1′ + 𝑥𝑥2 + 𝑥𝑥3 . Answer is YES:

𝑥𝑥1 ← 1, 𝑥𝑥2 ← 1, 𝑥𝑥3 ← 0;  𝐹𝐹 = 1 + 1′ 1′ + 1 + 0 = 1 + 0 0 + 1 + 0 = 1 . 1 = 1
2. 𝐹𝐹 = (𝑥𝑥1 + 𝑥𝑥2)𝑥𝑥1′𝑥𝑥2′ . Answer is NO. (Why?)

Try every possible 0/1 assignment to 𝑥𝑥1 and 𝑥𝑥2, and evaluate 𝐹𝐹. You will find that 𝐹𝐹=0 in 
each case
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Boolean algebra: 
• A Boolean variable 𝑥𝑥 can be assigned 0 or 1
• There are 3 Boolean operations: + . ′

standing for “or”, “and”, “not”
• 0+0=0, 0+1=1+0=1, 1+1=1
• 0.0=0, 0.1=1.0=0,  and 1.1=1
• 0’ = 1, 1’ = 0 (note that 𝑥𝑥.𝑥𝑥′ = 0 ∀ Bool 𝑥𝑥)
• A Boolean expression is an expression involving 

Boolean variables and the three operations

𝑥𝑥𝑥𝑥 = 𝑥𝑥. 𝑥𝑥



ANOTHER EXAMPLE OF YES-NO PROBLEMS
-- THE TRAVELING SALESMAN PROBLEM (TSP) --

• The original formulation of the Traveling Salesman Problem 

Instance: A weighted graph G

Question: Find a minimum-weight Hamiltonian cycle in G. 

• The yes-no formulation of TSP:

Instance: A weighted graph G and a real number d

Question: Does G have a Hamiltonian cycle of weight ≤ d? 
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DEFINITION OF NP
-- USING TURING MACHINES --

• Definition 1 of NP: A yes-no problem is said to be 
Non-deterministically Polynomial (NP) if we can find a 
non-deterministic Turing machine that can solve the 
problem in a polynomial number of nondeterministic 
moves.

• For those who are not familiar with Turing machines, 
two alternative definitions of NP will be developed.
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DEFINITION OF NP
-- ALTERNATIVE DEFINITION: THE GRADING ANALOGY --

• Definition 2 of NP: A yes-no problem is said to be NP if
• its solution comes from a finite set of possibilities, and
• it takes polynomial time to verify the correctness of a candidate solution 

• Remarks
• It is much easier and faster to "grade" (i.e., verify) a solution than to find 

a solution from scratch.
• We use NP to designate the class of all non-deterministically 

polynomial problems.
• Clearly, P is a subset of NP (Why?)

• A very famous open question in Computer Science:

𝑃𝑃 =
?
𝑁𝑁𝑃𝑃
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DEFINITION OF NP ALGORITHM
-- THE IMAGINARY “CHOOSE” -

• To give the 3rd alternative definition of NP, we introduce an imaginary, non-
implementable instruction, which we call "choose()".

• Behavior of "choose()":  
• if a problem has a solution of N components, choose(i) magically returns the i-th

component of the CORRECT solution in constant time

• if a problem has no solution, choose(i) returns mere "garbage", that is, it 
returns an uncertain value  (instead of knowing and saying “there is no 
solution”)

• Definition of NP algorithm: An NP algorithm is an algorithm that has 2 stages:
1. A guessing stage that uses choose() to find a solution to the problem

2. A verification stage that checks in polynomial time the correctness of the 
solution produced by the first stage, withoutusing choose() 
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TEMPLATE OF NP ALGORITHMS
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begin
// the guessing stage: guesses solution X[1:N] in O(N) time
for i=1 to N do 

X[i] := choose(i);
endfor

// the verification stage 
Write code that does not use "choose" and that verifies in 
polynomial time if X[1:N] is a correct solution to the 
problem. If correct, return (yes); else, return no.

end

The guessing stage (uses “choose”)

The verification stage (NO “choose”)



DEFINITION OF NP
-- ALTERNATIVE DEFINITION: THE IMAGINARY “CHOOSE” --

• Definition 3 of NP: A yes-no problem is said to be NP 
if there exists an NP algorithm for it (i.e., a polynomial 
guess-verify algorithm).

• Remark: For the NP algorithm template to be 
polynomial, the solution size N must be polynomial in 
the input size n, and the verification stage must be 
polynomial in n.

• Note: We will use the third definition of NP
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AN NP ALGORITHM FOR HAM
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Function HC( input: G) 
begin

// the guessing stage: guesses solution X[1:n] in O(n) time
for i=1 to n do 

X[i] := choose(i);
endfor

// the verification stage.  Time: 𝑂𝑂 𝑛𝑛2 , which is polynomial
for i=1 to n do 

for j=i+1 to n do 
if (X[i] == X[j]) then return(no); endif

endfor
endfor
for i=1 to n-1 do 

if ((X[i],X[i+1]) is not an edge) then return(no); endif
endfor
if ((X[n],X[1]) is not an edge) then return(no); endif
return(yes);

end

• The HC algorithm is 𝑂𝑂 𝑛𝑛2 , which is polynomial
• Therefore, the HC problem is NP



AN NP ALGORITHM FOR THE CLIQUE PROBLEM
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Function kclique( input: G, k) 
begin

// the guessing stage: guesses solution 
X[1:k] in O(n) time
for i=1 to k do 

X[i] := choose(i);
endfor

// the verification stage.  
for i=1 to k do 

for j=i+1 to k do 
if (X[i] == X[j] || (X[i],X[j]) is not 
an edge) then

return(no); 
endif

endfor
endfor
return(yes);

end

• The HC algorithm is 
𝑂𝑂 𝑘𝑘2 = 𝑂𝑂(𝑛𝑛2), which is 
polynomial

• Therefore, the HC 
problem is NP

This graph has 4-cliques:

This graph does not have 4-clqiues:
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The K-clique problem

• Input: A graph G and an integer k

• Question: Does G have a k-clique? 



CONNECTION B/W THE VERIFY STAGE AND 
THE BOUND FUNCTION IN BACKTRACKING

• Recall that in Backtracking, the Bound function checked for 
validity of a (partial) solution. 

• It did the checking incrementally, i.e., on a new component X[r] 

• Assuming X[1:r-1] is all valid

• The verification stage in NP algorithms is like the Bound 
function, except that the former checks the validity of whole
solution all at once

• Despite the difference, the underlying logic is the same
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LESSONS LEARNED SO FAR

• There are some problems, called NP problems, that can be 
solved in exponential time, but we don’t know if they are 
inherently exponential or can one day be solved in 
polynomial time

• Proving a yes-no problem to be NP is easy: design a guess-
verify algorithm (where the guess stage uses “choose” but the 
verify stage does not), such that the verify stage takes 
polynomial time

• The verify-stage is similar to the Bound function in 
Backtracking
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EXERCISES
• Exercise 1: Give an NP algorithm for the SUBSET-SUM problem

• Exercise 2: Give an NP algorithm for the TSP

• Exercise 3: Give an NP algorithm for the SAT problem

• Exercise 4: An independent set of k nodes in a graph G is any subset of k nodes in G 
such that no two nodes are adjacent. Express as a yes-no problem the problem of 
whether G has a k-node independent set, and prove it to be NP by giving an NP 
algorithm for it.

• Exercise 5: A vertex cover C of k nodes in a graph G is any subset of k nodes in G 
such that every edge in G has at least one end node in C. Express as a yes-no 
problem the problem of whether G has a k-node vertex cover, and prove it to be NP.

• Exercise 6: Express the k-colorability of a graph G as a yes-no problem, and prove it 
to be NP.
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NEXT LECTURE

• Transforms for yes-no problems

• Generalizations of transforms and some applications

• Reductions (using transforms)

• Definition of NP-completeness, conceptually  first, and using 
reductions second

• Practical strategy for proving new problems to be NP-complete

• Proving CLIQUE to be NP-complete, using a transform/reduction

• Closing thoughts
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